April 24, 2024
  • Phillips, K. M. et al. Stability of vitamin C in frozen raw fruit and vegetable homogenates. J. Food Compos. Anal. 23, 253–259 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Rowe, S. & Carr, A. C. Global vitamin C status and prevalence of deficiency: a cause for concern?. Nutrients 12, 1–20 (2020).


    Google Scholar
     

  • Baradhi, K. M., Vallabhaneni, S. & Koya, S. Scurvy in 2017 in the USA. Baylor Univ. Med. Cent. Proc. 31, 227–228 (2018).

    Article 

    Google Scholar
     

  • Linster, C. L. & Van Schaftingen, E. Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J. 274, 1–22 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Padayatty, S. J. & Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral. Dis. 22, 463–493 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frei, B., Birlouez-Aragon, I. & Lykkesfeldt, J. Authors’ perspective: what is the optimum intake of vitamin C in humans?. Crit. Rev. Food Sci. Nutr. 52, 815–829 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lane, D. J. R. & Richardson, D. R. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!. Free Radical Biol. Med. 75, 69–83 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Murgia, I., De Gara, L. & Grusak, M. A. Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies?. Front. Plant Sci. 4, 429 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Truffault, V. et al. Reduction of MDHAR activity in cherry tomato suppresses growth and yield and MDHAR activity is correlated with sugar levels under high light. Plant Cell Environ. 39, 1279–1292 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaoui, S. et al. Antioxidant pool optimization in Carthamus tinctorius L leaves under different NaCl levels and treatment durations. Acta Physiol. Plant. 38, 1–11 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Frikke-Schmidt, H., Tveden-Nyborg, P. & Lykkesfeldt, J. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs. Redox Biol. 7, 8–13 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carr, A. C. & Vissers, M. C. M. Synthetic or food-derived vitamin C: Are they equally bioavailable?. Nutrients 5, 4284–4304 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • United Nations Department of Economic and Social Affairs. Population facts. How certain are the United Nations global population projections? Proceedings of the National Academy of Sciences of the United States of America vol. 6 (2019).

  • Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bamji, M. S., Murty, P. V. V. S. & Sudhir, P. D. Nutritionally sensitive agriculture: an approach to reducing hidden hunger. Eur. J. Clin. Nutr. 757(75), 1001–1009 (2020).


    Google Scholar
     

  • Murgia, I., Arosio, P., Tarantino, D. & Soave, C. Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci. 17, 47–55 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Garg, M. et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 5, 12 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Garg, M. et al. Vitamins in cereals: a critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Front. Nutr. 8, 254 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Prasad, R. & Shivay, Y. S. Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. J. Plant Nutr. 43, 1534–1554 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Havas, L. Ascorbic acid (Vitamin C) and the germination and growth of seedlings. Nature 435 (1935).

  • Noreen, S. et al. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L grown under salt stress. Plant Physiol. Biochem. 158, 244–254 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Freebairn, H. T. & Taylor, O. C. Prevention of plant damage from air-borne oxidizing agents. Proc. Am. Soc. Hortic. Sci. 76, 693–699 (1960).

    CAS 

    Google Scholar
     

  • Mozafar, A. & Oertli, J. J. Vitamin C (Ascorbic acid): uptake and metabolism by soybean. J. Plant Physiol. 141, 316–321 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Freebairn, H. T. The prevention of air pollution damage to plants by the use of vitamin c sprays. J. Air Pollut. Control Assoc. 10, 314–317 (1960).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Freebairn, H. T. Uptake and movement of 1–C14 ascorbic acid in bean plants. Physiol. Plant. 16, 517–522 (1963).

    CAS 
    Article 

    Google Scholar
     

  • Hagene, P. & Trichet, J. Feeding of vitamin C to tomato stems and leaves. Nature 203, 783–784 (1964).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hausen, S. Effect of vit C (Ascorbic Acid) on the growth of plants. Nature 516 (1935).

  • Gallie, D. R. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 5, 3424–3446 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chen, Z., Young, T. E., Ling, J., Chang, S. C. & Gallie, D. R. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA 100, 3525–3530 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiao, Z. et al. Microgreens of Brassicaceae: mineral composition and content of 30 varieties. J. Food Compos. Anal. 49, 87–93 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ghoora, M. D., Babu, D. R. & Srividya, N. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal. 91, 103495 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Di Gioia, F., Petropoulos, S. A., Ozores-Hampton, M., Morgan, K. & Rosskopf, E. N. Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy 9, 677 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Puccinelli, M., Malorgio, F., Rosellini, I. & Pezzarossa, B. Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J. Sci. Food Agric. 99, 5601–5605 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Newman, R. G., Moon, Y., Sams, C. E., Tou, J. C. & Waterland, N. L. Biofortification of sodium selenate improves dietary mineral contents and antioxidant capacity of culinary herb microgreens. Front. Plant Sci. 12, 1–9 (2021).

    Article 

    Google Scholar
     

  • Germ, M. et al. Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine. J. Sci. Food Agric. 99, 4353–4362 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Locato, V., Cimini, S. & De Gara, L. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 4, 152 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morales, M. R. & Janick, J. Arugula. A promising specialty leaf vegetable. Trends New Crop. New Uses, 418–423 (2002).

  • Xiao, Z., Lester, G. E., Luo, Y. & Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem. 60, 7644–7651 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Agathokleous, E., Feng, Z. Z. & Peñuelas, J. Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants?. Sci. Total Environ. 726, 138637 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson, R. et al. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 172, 56–69 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weaver, C. M. Potassium and health. Adv. Nutr. 4, 368S-377S (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lehnhardt, A. & Kemper, M. J. Pathogenesis, diagnosis and management of hyperkalemia. Pediatr. Nephrol. 26, 377–384 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Martínez-Pineda, M., Yagüe-Ruiz, C. & Vercet-Tormo, A. Is it possible to include potato in the diet of chronic kidney disease patients? New culinary alternatives for limiting potassium content. J. Ren. Nutr. 30, 251–260 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Navarro, A. & Rubio, F. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57, 1149–1160 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Frossard, E., Bucher, M., Mächler, F., Mozafar, A. & Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 80, 861–879 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Mengel, D. B. & Barber, S. A. Rate of nutrient uptake per unit of corn root under field conditions 1. Agron. J. 66, 399–402 (1974).

    CAS 
    Article 

    Google Scholar
     

  • Manzoor Alam, S. Nutrient uptake by plants under stress conditions. In academia.edu 285–313 (1999). doi:https://doi.org/10.1201/9780824746728.ch12.

  • Sérino, S., Costagliola, G. & Gomez, L. Lyophilized tomato plant material: validation of a reliable extraction method for the analysis of vitamin C. J. Food Compos. Anal. 81, 37–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lichtenthaler, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Renna, M., Stellacci, A. M., Corbo, F. & Santamaria, P. The use of a nutrient quality score is effective to assess the overall nutritional value of three brassica microgreens. Foods 9, 675 (2020).

    Article 
    CAS 

    Google Scholar
     

  • FDA. Reference Amounts Customarily Consumed: List of Products for Each Product Category: Guidance for Industry. (2016)

  • FDA. Food Labeling: Revision of the Nutrition and Supplement Facts Labels: Guidance for Industry – Small Entity Compliance Guide. U.S. Department of Health and Human Services https://www.fda.gov/media/134505/download (2020)

  • USDA. FoodData Central. FoodData Central fdc.nal.usda.gov. https://fdc.nal.usda.gov/fdc-app.html#/ (2021)

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *